Máster Online
Inteligencia Artificial Aplicada al Sector Financiero

✓ Aprenderás a aplicar la IA en problemas reales del sector financiero.
✓ Estudiarás con profesores líderes en IA y finanzas, con experiencia en la industria.
✓ Podrás especializarte adicionalmente en áreas como Big Data o Ciberseguridad.
✓ Prepara tu carrera para roles clave en bancos, fintechs y consultoras.
- Beca Disponibles
- Convocatorias: Febrero, Junio y Octubre
- 104 ECTS
- Titulación Internacional IEP
Nº1
A nivel mundial en empleabilidad y calidad del profesorado 2022
Ranking FSO
Mejor MBA con énfasis en Dirección General 2022
Ranking Forbes
TOP 6
Mejor institución en formación superior online en el mundo 2022
Ranking FSO
Mejores Masters de España 2023
Mundo Posgrado
Mejores centros para cursar un MBA Online 2023
Características del Máster
El Máster en Inteligencia Artificial Aplicada al Sector Financiero rompe las barreras tradicionales de los programas técnicos, diseñado específicamente para profesionales sin conocimientos previos de programación.
Nuestro programa demuestra que la inteligencia artificial no es exclusiva de expertos en tecnología, sino una herramienta accesible para profesionales de finanzas que buscan innovar.
Con un enfoque eminentemente práctico, el máster desmitifica la complejidad técnica y capacita a los estudiantes en aplicaciones cruciales para el sector financiero: análisis de datos, predicción de mercados, detección de fraudes y toma de decisiones inteligentes.
Asimismo, este máster online permite a los alumnos combinar sus estudios con compromisos laborales y personales. El programa enfatiza el desarrollo de habilidades blandas, como liderazgo, gestión de proyectos y comunicación efectiva, esenciales para destacar en un mercado competitivo.
Los estudiantes recibirán formación en diversas habilidades y competencias a través de tres Certificaciones Profesionales Avanzadas: PROessentials, PROadvanced y PROexpertify. PROexpertify es una certificación profesional al final del máster, que permite a los estudiantes elegir entre 5 especializaciones estratégicas: Big Data, E-Commerce, Redes Sociales Digitales, Gestión de Proyectos y Ciberseguridad.
De esta manera, el programa busca que los alumnos asuman un rol activo en su desarrollo profesional, eligiendo una ruta que potencie sus capacidades y oportunidades laborales.







¿Tienes alguna duda?
Perfil de estudiante

Perfil de Ingreso Recomendado
- Recién egresados en Economía, Finanzas, Ingeniería, Matemáticas o Estadística que busquen desarrollar competencias en Inteligencia Artificial y su aplicación en finanzas para posicionarse en el mercado laboral con un perfil innovador y especializado desde el inicio de su carrera.
- Analistas, gestores de riesgos o consultores que deseen actualizarse en las últimas tendencias tecnológicas y dominar técnicas de IA para aplicar soluciones innovadoras en su área de trabajo.
- Emprendedores y líderes de proyectos interesados en ampliar su conocimiento en Inteligencia Artificial para desarrollar estrategias disruptivas y tecnológicas que le permitan transformar su organización y anticiparse a los retos del mercado financiero global.

Competencias adquiridas al finalizar tu Máster
- Aprenderás a desarrollar modelos avanzados de Machine Learning y Deep Learning aplicados a la gestión de riesgos, detección de fraudes y predicción de mercados financieros.
- Desarrollarás habilidades para aplicar técnicas de análisis de series temporales y procesamiento de lenguaje natural para interpretar datos financieros complejos y generar conocimiento accionable.
- Adquirirás competencias en el uso de herramientas de visualización y análisis de datos para mejorar la toma de decisiones estratégicas en instituciones financieras.
- Aprenderás la implementación de algoritmos de clasificación, regresión y clustering para resolver problemas específicos del sector financiero, como la segmentación de clientes y la evaluación crediticia.
- Obtendrás habilidades para liderar proyectos de transformación digital en el ámbito financiero, desde su conceptualización hasta la integración de soluciones basadas en Inteligencia Artificial.
- Aprenderás a aplicar principios éticos, normativas regulatorias y criterios de transparencia en el diseño y desarrollo de tecnologías disruptivas en finanzas.
- Serás capaz de comunicar conceptos técnicos a audiencias no especializadas, facilitando la colaboración entre equipos técnicos y estratégicos.

Obtén tu diploma de Harvard ManageMentor
Elige uno de los cursos en gestión y liderazgo en Harvard ManageMentor para mejorar tus habilidades empresariales y obtén tu certificado de Harvard Business Publishing.
Gracias a la colaboración entre Harvard Business Publishing Education (HBP) y IEP, accede a una formación de calidad que impulsará tu desarrollo profesional.
Te preparamos para obtener las certificaciones
Certificación norteamericana de Advanced Executive Program in Applied Artificial Intelligence.
Cursos Gratuitos y Certificables en Habilidades Empresariales
Accede gratuitamente a nuestra Escuela de Habilidades de la RedSumma y obtén certificados respaldados por hasta 50 horas de formación en educación empresarial.
Opiniones
Metodología
Aprendizaje sencillo, cómodo y eficaz

Entorno virtual avanzado

Enfoque del método del caso

Resolución proactiva de problemas

Práctica en escenarios reales

Con una innovadora plataforma online que permite la realización de ejercicios interactivos y la discusión de casos prácticos para desarrollar las habilidades de gestión y de análisis.

Con recursos de aprendizaje basados en avanzados simuladores empresariales que permiten movilizar el conocimiento y apoyar el emprendimiento entre nuestros alumnos.

Con vídeos explicativos de los profesores en cada módulo que te facilitarán el aprendizaje y te permitirán afianzar mejor los conceptos.

Con Sesiones Virtuales de Repaso, Casos Prácticos Integrales y Masterclass Nuevas Tendencias, que permiten ampliar conocimientos y aportar una visión práctica y aplicada a situaciones reales de las empresas.
Plan de estudios Máster en Inteligencia Artificial Aplicada al Sector Financiero
PROessentials: Certificado en Análisis Financiero e Inteligencia de Datos
El núcleo PROessentials está diseñado para desarrollar habilidades fundamentales y transferibles que sirven como base para el éxito académico y profesional de los estudiantes. Este enfoque fomenta la interacción entre alumnos de diferentes disciplinas, enriqueciendo sus perfiles y redes de contacto, mientras se centra en garantizar una enseñanza de calidad y contenidos sólidos. El programa proporciona una comprensión profunda y práctica de estas habilidades esenciales, preparándolos para enfrentar desafíos en diversos contextos y permitiendo una transición fluida hacia estudios avanzados y el entorno profesional.
Inteligencia Artificial: La revolución del dato en finanzas (6 ECTS)
La primera asignatura aborda cómo la Inteligencia Artificial transforma el sector financiero, convirtiendo los datos en un activo estratégico clave. Los estudiantes aprenderán las etapas esenciales de proyectos de IA en finanzas, desde la preparación de datos hasta la implementación de modelos analíticos.
- Introducción a la Inteligencia Artificial y aprendizaje automático
- Principios y aplicaciones Big Data en el sector financiero
- Manejo y procesamiento de datos financieros
- Modelos predictivos en finanzas
- Introducción a los modelos generativos en Inteligencia Artificial
- Retos y oportunidades de la Inteligencia Artificial en el contexto financiero
Visualización y análisis: Inteligencia de datos para decisiones financieras (6 ECTS)
Esta asignatura enseña técnicas avanzadas para analizar y visualizar datos financieros, transformándolos en información clara y útil. Los estudiantes aprenderán a limpiar, organizar y crear visualizaciones efectivas para respaldar decisiones estratégicas y preparar el desarrollo de modelos más complejos.
- Introducción al tratamiento de datos
- Conexión a fuentes de datos internas y externas
- Fundamentos de estadística descriptiva
- Pruebas de hipótesis y análisis de relaciones estadísticas
- Preparación de datos para el modelado analítico
- Creación de visualizaciones efectivas
PROadvanced: Certificado en Estrategias Financieras Avanzadas basadas en IA
Las asignaturas PROadvanced están diseñadas para desarrollar competencias especializadas y habilidades prácticas en el área de estudio de cada estudiante. Estas asignaturas profundizan en conceptos, teorías y herramientas clave de la disciplina, preparando a los alumnos para aplicar estos conocimientos en contextos reales. Además, se fomenta el trabajo en equipo y el liderazgo, esenciales para enfrentar desafíos profesionales y destacar en su campo.
Gestión avanzada del riesgo crediticio: Algoritmos para transformar la toma de decisiones financieras (6 ECTS)
Esta asignatura explora cómo la Inteligencia Artificial optimiza la toma de decisiones estratégicas en finanzas, enfocándose en algoritmos como K-Nearest Neighbors, Naive Bayes y Random Forest. Los estudiantes aprenderán a aplicar estos modelos mediante casos prácticos para resolver problemas financieros complejos.
- Introducción a los algoritmos de clasificación
- Evaluación de modelos de clasificación
- Naive Bayes en la clasificación y segmentación de datos
- K-Nearest Neighbors para análisis de comportamiento financiero
- Modelos basados en árboles de decisión: técnicas de Bagging y Boosting
- Aplicación de algoritmos de clasificación en la evaluación de riesgos crediticios
Inteligencia Artificial estratégica: Modelos y métricas para anticipar el futuro (6 ECTS)
Esta asignatura aborda técnicas avanzadas para gestionar el riesgo crediticio, utilizando algoritmos de regresión como Linear Regression y Random Forest Regression. Los estudiantes aprenderán a procesar datos financieros y diseñar estrategias efectivas de mitigación de riesgos en entornos complejos.
- Introducción a los algoritmos de regresión en el contexto financiero
- Regresión lineal para la predicción de precios de activos financieros
- Evaluación de modelos de regresión: métricas y aplicaciones
- Regularización modelos financieros: Regresión Lasso y Ridge
- Árboles de regresión
- Regresión logística aplicada a la probabilidad de eventos financieros
Segmentación inteligente y carteras óptimas: Clustering aplicado al mercado financiero (6 ECTS)
Esta asignatura explora técnicas de aprendizaje no supervisado, como K-Means y Principal Component Analysis, para la segmentación de clientes y optimización en mercados financieros. Los estudiantes aprenderán a evaluar la calidad de los clusters y aplicar estas herramientas en casos prácticos.
- Introducción al aprendizaje no supervisado en el contexto financiero
- Fundamentos de los algoritmos de clustering
- Evaluación y validación de modelos de clustering en finanzas
- K-Means clustering para segmentación de clientes financieros
- Clustering jerárquico en aplicaciones financieras
- Algoritmos de reducción de dimensionalidad
Fraude financiero bajo control: Inteligencia Artificial como barrera en la era digital (6 ECTS)
Esta asignatura aborda técnicas avanzadas de Inteligencia Artificial, como Isolation Forest y Support Vector Machines, para detectar y prevenir fraudes financieros. Los estudiantes aprenderán a modelar riesgos, identificar anomalías y diseñar sistemas de detección robustos y confiables.
- Introducción a la detección de anomalías en el ámbito financiero
- Métodos estadísticos para la detección de anomalías en datos financieros
- Técnicas basadas en distancia y su aplicación en finanzas
- Evaluación de modelos de detección de anomalías
- Árboles de decisión para la detección de fraude financiero
- Modelos basados en SVM para detección de anomalías financieras
Redes neuronales para la economía: Decisiones precisas en mercados complejos (6 ECTS)
Esta asignatura combina teoría y práctica para enseñar el uso de redes neuronales, desde el perceptrón simple hasta modelos avanzados, en la toma de decisiones económicas. Los estudiantes desarrollarán habilidades en deep learning, ajuste de hiperparámetros y regularización para resolver problemas complejos de análisis financiero.
- Introducción a las redes neuronales artificiales
- Funciones de activación y su impacto en el aprendizaje de la red
- Forward propagation y el cálculo de la salida de la red neuronal
- Backpropagation para el ajuste de los pesos de la red neuronal
- Optimización de redes neuronales mediante descenso de gradiente
- Evaluación y sobreajuste de redes neuronales
Interpretabilidad, sesgos y ética: Construyendo confianza en la IA financiera (6 ECTS)
La asignatura aborda interpretabilidad, sesgos y ética en aplicaciones de IA para finanzas, enseñando técnicas como LIME y SHAP para explicar modelos. Los estudiantes aprenderán a identificar sesgos, analizar impactos de decisiones automatizadas y aplicar principios éticos que equilibren innovación con responsabilidad.
- Introducción a la interpretabilidad de modelos en finanzas
- El impacto de los sesgos en los modelos y su influencia en las decisiones
- Estrategias para la prevención de sesgos en modelos financieros
- Principios de Fairness para construir modelos financieros justos
- Ética y cumplimiento normativo en el uso de la Inteligencia Artificial
- Técnicas de interpretabilidad: LIME, SHAP, permutación y otros enfoques
Predicción inteligente: Inteligencia Artificial para el análisis de precios en mercados financieros (6 ECTS)
Esta asignatura enseña técnicas de IA para la predicción de precios en mercados financieros, combinando modelos estadísticos como ARIMA con arquitecturas avanzadas de deep learning como Recurrent Neural Networks. Los estudiantes aplicarán estas herramientas para capturar patrones complejos y mejorar la precisión en análisis financieros.
- Introducción al análisis de series temporales en finanzas
- Modelos analíticos para la predicción de precios de activos financieros
- Selección de parámetros y validación de modelos clásicos
- Redes neuronales recurrentes para la exploración de series temporales
- Long Short-Term Memory como técnica avanzada de series temporales
- Comparación de modelos en la predicción de mercados financieros
Procesamiento del Lenguaje Natural en los mercados: Análisis de noticias financieras (6 ECTS)
Esta asignatura aborda el uso de técnicas de Natural Language Processing, como Word2Vec y BERT, para analizar textos financieros y datos no estructurados. Los estudiantes aplicarán estas herramientas en tareas como análisis de sentimiento y extracción de información clave para tomar decisiones estratégicas en mercados dinámicos.
- Introducción al procesamiento del lenguaje natural y su aplicación en finanzas
- Preprocesamiento de textos financieros mediante múltiples técnicas
- Modelos de representación de texto financieros
- Aplicaciones para análisis de sentimiento y monitoreo de redes sociales
- Modelos avanzados de lenguaje para el análisis de texto financieros
- Feature engineering de textos para modelos predictivos en finanzas
Regulación e Inteligencia Artificial: Cumpliendo las normas en la innovación financiera (6 ECTS)
Esta asignatura analiza la regulación y ética en la Inteligencia Artificial aplicada a finanzas, incluyendo normativas sobre privacidad, transparencia y fintech. Los estudiantes comprenderán cómo estas leyes impactan la innovación y el uso responsable de la tecnología en el sector financiero.
- Principios y desafíos a la regulación en fintech
- Regulación en la gestión y protección de datos
- Leyes y normativas clave en el marco regulatorio financiero
- Retos y oportunidades legales de la industria fintech
- Cuerpos normativos internacionales
- Cumplimiento y buenas prácticas
Proyecto Fin de Programa (8 ECTS)
El Trabajo fin de Máster es el último paso para obtener el título del programa formativo. Consiste en la realización de un trabajo académico en el que se apliquen o desarrollen conocimientos adquiridos a lo largo del programa formativo. Este trabajo deberá contemplar la aplicación de competencias generales asociadas al programa.
Proexpertify: Certificación profesional avanzada
Los estudiantes de los PROexpertify diseñan su propio camino académico explorando áreas más allá de su disciplina principal. Esta etapa fomenta competencias interdisciplinarias, ampliando sus horizontes y preparándolos con una perspectiva global para destacar en un entorno empresarial diversificado.
PROexpertify en: Manager en Big Data
Herramientas de Big Data y Gobierno del Dato (6 ECTS)
Este curso aborda cómo estructurar la cultura de toma de decisiones basadas en datos, desde la gestión y distribución de información hasta los accesos. Los estudiantes aprenderán sobre herramientas de captura, almacenamiento, procesamiento, visualización (incluyendo SAS Visual Analytics) y gobierno del dato.
- Almacenamiento y procesamiento de la información
- Información estructurada
- Tecnologías Big Data
- Análisis y visualización de la información
- Herramienta SAS Visual Analytics
- Gobierno del Dato.
Lenguajes de Programación de Nuevo Entorno (6 ECTS)
Este curso enseña lenguajes de programación esenciales para ciencia de datos, como Python, junto con sus principales librerías, herramientas de desarrollo como IDEs y conceptos básicos de Cloud Computing para implementar soluciones.
- Conceptos Clave en los Lenguajes de Programación en la Ciencia de Datos
- Lenguajes de Programación Más Utilizados
- Python: Primeros Pasos
- Herramientas de Desarrollo: Principales IDEs
- Python: Principales Librerías de Ciencia de Datos
- Cloud Computing
PROexpertify: Manager en E-Commerce de Emprendimientos
E-Commerce: situación actual y tendencias (6 ECTS)
Esta asignatura aborda el diseño y marketing digital en comercio electrónico, explorando tendencias actuales y estrategias para optimizar el rendimiento y superar los desafíos diarios de una tienda online.
- Introducción al e-Commerce
- Situación actual y tendencias
- UX/UI aplicado en e-Commerce
- Marketing digital y e-Commerce
- Fidelización y estrategia digital en e-Commerce
Gestión de un E-Commerce (6 ECTS)
Esta asignatura aborda aspectos clave de la gestión de comercio electrónico, desde servicios de pago y logística hasta aspectos legales y software de gestión para operar un negocio digital.
- Logística y medios de pago
- Software de gestión: ERP y CRM
- Omnicanalidad
- Internacionalización de un e-Commerce
- Aspectos legales de un e-Commerce
- Casos de éxito: Amazon y Alibaba
PROexpertify: Manager en Redes Sociales Digitales
Social Media Marketing (6 ECTS)
Esta asignatura desarrolla competencias en Community Management y Personal Branding, enseñando estrategias en redes sociales y gestión de la reputación online (ORM) para alcanzar objetivos de marca personal o empresarial.
- El cliente y las empresas en las redes sociales
- Claves de Community Management
- Claves de Personal Branding
- Redes Sociales
- Facebook y Meta Business Suite
- Análisis y Online Reputation Marketing (ORM)
Inbound Marketing: Social Media Marketing (6 ECTS)
Esta asignatura enseña Inbound Marketing y Social Media Marketing, incluyendo estrategias de Social Selling, generación de leads, marketing de contenidos y técnicas de Growth Hacking para captar y fidelizar clientes.
- Introducción al Concepto de Inbound Marketing
- Social Selling
- Atracción y Conversión en Inbound Marketing
- Inbound Marketing y Marketing de Contenidos en Redes Sociales
- Cierre y Fidelización en Inbound Marketing
- Growth Hacking
PROexpertify en: Manager en Gestión de Proyectos
Seguimiento de Proyectos (6 ECTS)
En esta asignatura se suministra al alumno el conocimiento de las herramientas necesarias para el diseño e implementación de procesos eficientes y efectivos que permitan el seguimiento, supervisión o control a cualquier tipo de proyecto.
- Generalidades del Seguimiento de Proyectos
- Alcance del Seguimiento
- Planificación del Seguimiento
- Seguimiento del Trabajo, Cronograma y Costes
- Seguimiento de la Calidad y las Comunicaciones
- Seguimiento de los Riesgos, Adquisiciones e Interesados
Gestión de Riesgos en Proyectos (6 ECTS)
Esta asignatura desarrolla competencias en Gestión de Riesgos en Proyectos, cubriendo planificación, análisis, respuesta y seguimiento de riesgos mediante metodologías avanzadas para garantizar el éxito en proyectos.
- Introducción a la Gestión de Riesgos
- Planificación de la Gestión de Riesgos
- Identificación de los Riesgos
- Análisis Cualitativo de Riesgos
- Análisis Cuantitativo de Riesgos
- Planificación de la Respuesta a los Riesgos
- Seguimiento y Control de Riesgos
- La Gestión de Riesgos Bajo Otros Enfoques
PROexpertify: Manager en Ciberseguridad
Fundamentos de Ciberseguridad (6 ECTS)
El principal objetivo que busca esta materia introductoria es brindar al alumno una idea general de la ciberseguridad, sus bases y principal terminología. Así como fortalecer el análisis crítico en los sistemas tecnológicos. En esta materia el alumno también conocerá las principales certificaciones de ciberseguridad.
- Introducción a la ciberseguridad
- Amenazas cibernéticas
- Criptografía
- Políticas y estándares de seguridad
- Gestión de riesgos y continuidad del negocio
- Mejores prácticas y certificaciones de ciberseguridad
Ciberseguridad en Infraestructuras Críticas (6 ECTS)
Esta asignatura prepara a los estudiantes para proteger infraestructuras críticas frente a ciberataques, analizando su importancia y vulnerabilidades, con énfasis en prevenir impactos en la seguridad pública, la economía y la sociedad.
- Introducción a las infraestructuras críticas.
- Sistemas de control industrial
- Amenazas y vulnerabilidades de las infraestructuras críticas.
- Defensas a las infraestructuras críticas
- Medidas técnicas de protección
- Caso de Estudio “APT STUXNET”
Solicitud de admisión
CONVOCATORIAS

PROCESO
Para cada convocatoria se realiza el siguiente proceso de admisión, en base a una selección de alumnos para las plazas limitadas ofertadas:
Enviar solicitud
Condiciones de admisión
Los asesores de admisiones de IEP informarán al candidato sobre todas las cuestiones relativas al programa así como del proceso y condiciones de admisión.
Documentación
El candidato deberá cumplimentar el “formulario de admisión y enviarlo a IEP junto con su Currículum Vitae.
Decisión del comité
El Comité de Admisiones estudiará el expediente y comunicará al alumno, si es apto, que le concede la plaza para estudiar el programa.
Salidas Profesionales Máster en Inteligencia Artificial Aplicada al Sector Financiero
Científico de Datos Financieros

Especialista en Detección de Fraudes

Analista de Riesgos Financieros

Consultor en Innovación Financiera

Gerente de Transformación Digital

Especialista en Procesamiento de Lenguaje Natural Financiero


Becas
El Instituto cuenta con un programa de becas que puede llegar a cubrir Disponibles del coste de la matrícula. En cada convocatoria se ofertan un número limitado de becas en base a la situación personal, profesional o económica de los candidatos. Para su adjudicación, se sigue un riguroso orden de solicitud.
Para poder disfrutar de una Beca es necesario realizar una entrevista telefónica personal. En dicha entrevista, se trata de determinar si el candidato cumple los requisitos solicitados por la Fundación para la obtención de la ayuda.

+ 1.000 becas
Concedidas en el último año

Financiación
Existen también condiciones especiales de financiación, promovidas por ambas Instituciones, con el fin de ayudar a soportar la carga financiera de los estudios, para aquellos alumnos que lo soliciten y cumplan con las condiciones requeridas para su aprobación.

+ 10.000 profesionales
Han cumplido su objetivo gracias a nuestras facilidades económicas
Solicita información
Sus datos han sido registrados exitosamente.